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Determination of nucleation rates near the critical point
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The nucleation rates derived for the condensation from a supersaturated vapor are examined both in the
classical theory and in the modern coarse-grained field theory. By virtue of the scaling variablelZ it is shown
that the method of steepest descent is irrelevant to evaluate the nucleation rate in the proximity of the critical
point in the capillary approximation. If the logarithmic corrections to the activation energy of a droplet are
taken into account, then the calculated nucleation rates provide an adequate description of the liquid-gas phase
transition both near and out of the critical range.@S1063-651X~97!08111-7#

PACS number~s!: 64.60.Fr, 64.60.Qb, 05.70.Fh, 64.70.Fx
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The problem of homogeneous nucleation has been in
sively investigated both theoretically and experimenta
~see, e.g.,@1–3# and references therein!. The first theoretical
approach to it, which is often referred to as classical nuc
ation theory, was worked out about 50 years ago mainly
Becker and Do¨ring @4# and Zeldovich@5#. Later on the clas-
sical nucleation theory was generalized to a system of a
trarily many degrees of freedom by Landauer and Swan
@6# and to the field theories by Cahn and Hilliard@7# and
Langer@8,9#. Langer pointed out that the coarse-grained p
cedure can be efficiently performed near the critical po
where the radius of critical fluctuations is larger than t
characteristic correlation length.

Both classical and modern coarse-grained field theory
sumes that the decay of an initially homogeneous metast
state should proceed via the formation of nucleated clus
of a new, stable state. The rate of relaxation of the metast
state, or nucleation rate, is given by the formula

I 5I 0exp~2bDFc!. ~1!

Here I 0 is the preexponential factor,b[(kBT)21, kB is
Boltzmann’s constant,T is the temperature of the system
and DFc is the excess free energy of the critically lar
cluster in the system. Even though the prefactors in b
theories have different expressions, the numerical results
condensation from the supersaturated vapor@10# are very
similar. In principle, it is possible to show@11# that under the
certain assumptions the prefactor derived in the class
theory may be obtained in a form equivalent to that of
field theory. To test the predictions of the nucleation theor
a number of experiments on the separation of binary flu
near the critical point@12,13# have been performed. It turne
out that the critical systems were more stable than it w
expected from the theoretical calculations. To explain t
difference between theory and experiment Binder a
Stauffer@14,15# argued that since the experimentalists m
sured the completion time of the transition, one has to c
sider both droplet formation and droplet evolution, grow
and shrinkage, during the relaxation process. Near the cri
point droplets grow very slowly and this circumstance dec
erates the completion of the phase transition. A detailed
scription of the nucleation kinetics in near-critical fluid
561063-651X/97/56~5!/6177~4!/$10.00
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similar to the theory of coagulation by Lifshitz and Slyozo
@16,17# has been developed by Langer and Schwartz@18#.
The overall reaction rate was found to be much lower th
the nucleation rate alone.

In the present paper we would like to show that the nuc
ation rate itself calculated in the capillary approximati
near the critical point is overestimated. Therefore, the ag
ment between theory and experiment should be even be
For the sake of simplicity, we will consider first the applic
tion of the classical nucleation theory to a first-order pha
transition with only one order parameter, for instance, c
densation from the supersaturated vapor.

The excess of the Helmholtz free energy due to the f
mation of a spherical droplet of radiusR is equal in the
capillary ~or thin wall! approximation@17# to the sum of the
bulk and the surface energies

DF~R!52
4p

3
R3Dp14pR2s, ~2!

containing the difference in pressures inside and outside
droplet Dp and the surface tensions. Minimization of the
DF with respect to the radius yields the energy of the cr

cally large dropletDFc5 4
3 pRc

2s, where the critical radius is
given by Laplace’s formulaRc52s/Dp. Using the reduced
variables@19# lZ5RcA4psb and r 5R/Rc , we have

bDF52
2

3
lZ

2r 31lZ
2r 2 ~3!

and

bDFc5
1

3
lZ

2 . ~4!

As first shown by Zeldovich@5#, the size distribution
function of dropletsf (R) obeys the Fokker-Planck kineti
equation

] f

]t
52

]J

]R
, ~5!

where
6177 © 1997 The American Physical Society
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J52B
] f

]R
1A f ~6!

is a so-called current in the size space, containing the di
sion and the drift coefficientsB andA. The solution of Eq.
~5! corresponding toJ5J050 is a well-known canonica
distribution f 0(R)}exp(2bDF). In terms of the ratio
f (R)/ f 0(R), Eq. ~6! may be rewritten as

J5B f0~R!
]

]R F f ~R!

f 0~R!G . ~7!

The theory of first-order phase transitions is based on
requirement of the steady-state fluxJ5Jss5const. In the
region of smallr the distribution functionf (R) is very close
to the equilibrium distribution functionf 0(R), whereas it
diminishes quickly forr>1. These boundary conditions rep
resent the constant replenishment of the stock of small d
lets because of the thermodynamic fluctuations and the
that droplets of supercritical sizes are removed from the s
tem and merge into the new phase. The steady-state sol
of Eq. ~7! that satisfies both boundary conditions reads

Jss
215E

0

` dR

B f0~R!
. ~8!

In order to evaluate the integral analytically it is usua
mentioned that the integrand has a very sharp maximum
R5Rc due to the maximum of the activation droplet ener
at this point. Therefore, one may replace the activation
ergy near the critical radius by its harmonic approximatio

bDF5b~DF !R5Rc
1

1

2
bS ]2DF

]R2 D
R5Rc

~R2Rc!
2

5bDFc2lZ
2~r 21!2 ~9!

and then apply the method of steepest descent. We hav

Jss5
B~r c! f 0~r c!

Rc
A2

b

2p S ]2DF

]r 2 D
r 5r c

5
B~1! f 0~1!

Rc

lZ

Ap
.

~10!

Mathematically, the assumption thatDF(r ) has a sharp
maximum atr c51 means that

@AbuDF9~1!u#21!1, ~11!

whereDF9 denotes the second derivative ofDF with respect
to the reduced radiusr .

It is easy to see that in the capillary approximation

buDF9~1!u52lZ
2 . ~12!

Our next step is to determine the dependence of the sim
ity numberlZ on the critical exponents provided the tem
perature of the system approaches the critical one.

As functions ofu512T/Tc , the thermodynamic quanti
ties needed for our analysis have the following power-l
approximations in the vicinity of the critical point:
-

e

p-
ct
s-
ion

at

-

r-

s;um8, Dp;ub8d8. ~13!

In classical theory the critical exponentsb8 andd8 are equal
to 1/2 and 3, respectively. The measured value of the ex
nent m8 lies in the range 1.22–1.29@20# and we will use
m851.25 in our further calculations. Thus the critical radi
tends to infinity at a critical temperature a
u (m82b8d8)5u21/4. The similarity number near the critica
temperature obeys the power law

lZ5RcA4psb;u~3m8/22b8d8!5u3/8. ~14!

It is clear that the parameterlZ tends to zero atT→Tc and
that the criterion~11! is not fulfilled. Therefore, in the thin
wall approximation the method of steepest descent is
applicable to the evaluation of the nucleation rate near
critical point.

In the semiphenomenological droplet model worked o
by Fisher@21# the activation free energy includes also t
curvature term related to the small fluctuations in the sh
of the droplet which do not change both the volume and
surface area of the droplet

DFF~R!52
4

3
pR3Dp14psR213tb21ln

R

r 0
. ~15!

Heret is the Fisher critical exponent, which is about 2.2, a
r 0 is the radius of the smallest droplet in the system. It
worth noting that the spherical harmonic excitations of
droplet ~Goldstone modes! have been calculated@8,22# also
in the field theory. These calculations lead to the appeara
of the logarithmic term in the expansion of the free-ener
density, similar to the curvature term in Eq.~15!, with the
critical exponentt57/3. Then in the harmonic approxima
tion

bDFF5bDFc
F2

9t12lZ
2

2
~r 21!2, ~16!

bDFc
F52t1

lZ
2

3
13t ln

Rc
F

r 0
. ~17!

Note that the critical radiusRc
F appearing in Eq.~17! is not

the same as that given by Laplace’s formula, but should
determined by the solution of cubic~with respect toR! equa-
tion. Now

bu@DFF~1!#9u59t12lZ
2 ~18!

and the method of steepest descent is relevant since the
terion ~11! is fulfilled:

~9t12lZ
2!lZ→0

21 →~9t!21!1. ~19!

Performing the saddle-point integration in Eq.~8!, one can
find the nucleation rate in the droplet model approach

Jss
F 5

BF~1! f 0
F~1!

Rc
F A9t12lZ

2

2p
. ~20!
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To compare the analytical expressions given by Eqs.~10!
and ~20! with the numerical solutions of Eq.~8!, we plot in
Fig. 1 the ratio (Jss)numeric/(Jss)analytic versus
lZ5RcA4psb calculated both in the capillary approxima
tion and in the Fisher droplet model. We see that form
~20! gives us values of the nucleation rateJss that agree with
the results of numerical calculations by Eq.~8! within the 5%
accuracy limit even for very small values oflZ . In contrast,
in the capillary approximation presented by Eq.~10!, signifi-
cant deviations from the numerical results start already
lZ52, which is assigned to a system rather far from
critical point. Thus the valuelZ52 may be considered as
limit of applicability of the classical expression~10! for the
nucleation rate. At larger values of the similarity numb
both analytical expressions~10! and ~20! fit well to the re-
sults of numerical calculations.

The errors introduced by the method of steepest des
have been calculated numerically@23# for the condensation
of a gas. It was found that the errors are negligibly sm
except for the smallest critical droplets and for the smal
values of the activation energy of the critical droplet. W
show that this error can be parametrized by the single sca
variablelZ . Our analysis is valid for the Langer theory@9#
also, in which the prefactorI 0 is shown to be a product of th
dynamical and statistical prefactorsk andV0 , respectively,

I 05
uku
2p

V0 . ~21!

The dynamical prefactor describes the exponential gro
rate of the unstable mode at the saddle point. It is relate
the single negative eigenvaluel1 of the generalized mobility

FIG. 1. Ratio (Jss)numeric/(Jss)analytic versus the paramete
lZ5Rc(4psb)1/2 corresponding to the Fisher droplet model~solid
line! and to the capillary approximation~dashed line!.
.
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matrix Mi j 5]2DF/]j i]j j , where $j i% is a set of macro-
scopic variables describing the system. The integration o
a plane containing the saddle point is performed by
method of steepest descent and the statistical prefactor
comes

V05V S 2p

bul1u D
1/2 Fdet~bM0 /2p!

det~bM 8/2p! G
1/2

, ~22!

whereV is the available phase-space volume of the sad
point, the index 0 denotes the metastable state, and a p
indicates that the negative eigenvaluel1 as well as the zero
eigenvalues of the matrixMi j is omitted. For the process o
vapor condensation the simplified model contains only
order parameter. From the definition of the mobility matrix
follows that2bl152lZ

2 @cf. Eq. ~12!#. Therefore, Eq.~22!
cannot be applied in the capillary approximation for t
liquid-gas system near the critical point because the crite
~11! is violated. To calculate the nucleation rate in the cr
cal region one has either to evaluate the integral numeric
or to insert the logarithmic corrections@8,22# mentioned
above in the activation energy of a dropletbefore the
steepest-descent evaluation of the integral. In the latter c
this curvature term will play a crucial role in the determin
tion of the saddle point for the free-energy functional. This
the last important point in our discussion. Equation~1! can
be rewritten also@8# via the imaginary part ImF of the ana-
lytic continuation of the free energy density to the metasta
state

I 5
buku

p
ImF, ~23!

and the evaluation of ImF has been widely discussed in th
literature. Sometimes ImF has a form@18# like xtexp(2x2),
where the dimensionless variablex2 corresponds to the acti
vation energy of a critical droplet timesb, and the saddle
point is calculatedin the capillary approximation. In the
context of a steepest descent this implies that the term w
the logarithmic correctionsxt is considered as a slowly vary
ing part of the integrand in the vicinity of saddle poin
Therefore, these corrections are added to the activation
ergy after the saddle-point evaluation of the integral and t
nucleation rate is overestimated again near the critical po
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