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Determination of nucleation rates near the critical point
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The nucleation rates derived for the condensation from a supersaturated vapor are examined both in the
classical theory and in the modern coarse-grained field theory. By virtue of the scaling variable shown
that the method of steepest descent is irrelevant to evaluate the nucleation rate in the proximity of the critical
point in the capillary approximation. If the logarithmic corrections to the activation energy of a droplet are
taken into account, then the calculated nucleation rates provide an adequate description of the liquid-gas phase
transition both near and out of the critical ran§®1063-651X97)08111-7
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The problem of homogeneous nucleation has been intersimilar to the theory of coagulation by Lifshitz and Slyozov
sively investigated both theoretically and experimentally[16,17] has been developed by Langer and Schwgl#].
(see, e.g.J1-3] and references therginThe first theoretical The overall reaction rate was found to be much lower than
approach to it, which is often referred to as classical nuclethe nucleation rate alone.
ation theory, was worked out about 50 years ago mainly by In the present paper we would like to show that the nucle-
Becker and Ddng [4] and Zeldovich5]. Later on the clas- ation rate itself calculated in the capillary approximation
sical nucleation theory was generalized to a system of arbirear the critical point is overestimated. Therefore, the agree-
trarily many degrees of freedom by Landauer and Swansoment between theory and experiment should be even better.
[6] and to the field theories by Cahn and Hilliafd] and  For the sake of simplicity, we will consider first the applica-
Langer[8,9]. Langer pointed out that the coarse-grained protion of the classical nucleation theory to a first-order phase
cedure can be efficiently performed near the critical pointransition with only one order parameter, for instance, con-
where the radius of critical fluctuations is larger than thedensation from the supersaturated vapor.
characteristic correlation length. The excess of the Helmholtz free energy due to the for-

Both classical and modern coarse-grained field theory agnation of a spherical droplet of radilR is equal in the
sumes that the decay of an initially homogeneous metastabtzpillary (or thin wall) approximation/17] to the sum of the
state should proceed via the formation of nucleated clustersulk and the surface energies
of a new, stable state. The rate of relaxation of the metastable
state, or nucleation rate, is given by the formula 4_77

AF(R)=——

R3Ap+47R%0, 2

I =lqexp(— BAF,). (1)
containing the difference in pressures inside and outside the
Here |, is the preexponential factod=(ksT) %, kg is  dropletAp and the surface tensiom. Minimization of the

Boltzmann’s Constanﬂ' is the temperature of the System, AF W|th I’eSpeCt to the I’adiUS yle|dS the energy Of the Cl’iti-
and AF. is the excess free energy of the critically large cally large dr0p|eﬂFC:%7TR§O', where the critical radius is
cluster in the system. Even though the prefactors in botlyiven by Laplace’s formuld&.=20/Ap. Using the reduced
theories have different expressions, the numerical results fafariables[19] A,=R 4708 andr=R/R,, we have
condensation from the supersaturated vadd)] are very
similar. In principle, it is possible to shojtt 1] that under the
certain assumptions the prefactor derived in the classical
theory may be obtained in a form equivalent to that of the
field theory. To test the predictions of the nucleation theoriesand
a number of experiments on the separation of binary fluids
near the critical poinf12,13 have been performed. It turned

out that the critical systems were more stable than it was
expected from the theoretical calculations. To explain this
difference between theory and experiment Binder and As first shown by Zeldovich5], the size distribution
Stauffer[14,15 argued that since the experimentalists meafunction of dropletsf(R) obeys the Fokker-Planck kinetic
sured the completion time of the transition, one has to conequation

sider both droplet formation and droplet evolution, growth

and shrinkage, during the relaxation process. Near the critical of 4d 5
point droplets grow very slowly and this circumstance decel- st IR’ ®)
erates the completion of the phase transition. A detailed de-

scription of the nucleation kinetics in near-critical fluids where

2
,BAF=—§)\§r3+)\§r2 )

1 2
BAF=3)3. @
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’ 16/
J:_Bj_;+Af ® o~6*", Ap~6F7. (13
In classical theory the critical exponem$ and 5’ are equal
is a so-called current in the size space, containing the diffuto 1/2 and 3, respectively. The measured value of the expo-
sion and the drift coefficient8 andA. The solution of Eq. nentw' lies in the range 1.22-1.220] and we will use
(5) corresponding taJ=Jy=0 is a well-known canonical w«’'=1.25 in our further calculations. Thus the critical radius
distribution fo(R)«exp(—BAF). In terms of the ratio tends to infinity at a critical temperature as
f(R)/fo(R), Eg.(6) may be rewritten as g ~B'9")=g=14 The similarity number near the critical
temperature obeys the power law

Nz=Redma f~ g3r' 127891 g3 (14)

The theory of first-order phase transitions is based on thﬁ: is clear that the parametar, tends to zero aT*)TC and
requirement of the steady-state flix=Jss=const. In the  that the criterion(11) is not fulfilled. Therefore, in the thin
region of smallr the distribution functiorf (R) is very close  wall approximation the method of steepest descent is not
to the equilibrium distribution functiorf(R), whereas it applicable to the evaluation of the nucleation rate near the
diminishes quickly for =1. These boundary conditions rep- critical point.
resent the constant replenishment of the stock of small drop- |n the semiphenomenological droplet model worked out
lets because of the thermodynamic fluctuations and the fagly Fisher[21] the activation free energy includes also the
that droplets of supercritical sizes are removed from the syscurvature term related to the small fluctuations in the shape
tem and merge into the new phase. The steady-state soluti@f the droplet which do not change both the volume and the
of Eq. (7) that satisfies both boundary conditions reads surface area of the droplet

0
J=Bfo(R) 55

f(R)
fo(R) |

@)

lefmd_R (8) AEF(R) = 4 3 2 -1 R
ss o Bfg(R)’ F (R)——§’7TR Ap+47oR“+378 *In E. (15
In or_der to evaluatg the integral analytically it is L_Isually Hereris the Fisher critical exponent, which is about 2.2, and
mentioned that the integrand has a very sharp maximum a{, is the radius of the smallest droplet in the system. It is
R=R; due to the maximum of the activation droplet energyworth noting that the spherical harmonic excitations of a
at this point. Th_e_refore, one may replace_the activgtior_l endroplet (Goldstone modgshave been calculatd®,22] also
ergy near the critical radius by its harmonic approximation in the field theory. These calculations lead to the appearance
of the logarithmic term in the expansion of the free-energy

1 [9°AF density, simil i i
_ < 52 y, Similar to the curvature term in E@5), with the
BAF_'B(AF)R:RC+ 2’8 IR? R_R (R=Re) critical exponentr=7/3. Then in the harmonic approxima-
¢ tion
=BAF —AZ(r—1)? ©) ,
. . 97+ 2\% )
and then apply the method of steepest descent. We have BAF"=pBAF.— 2 (r=1)% (16)
5. _Blrofo(ro) \/_ﬁ azAF> _B(L)fo(1) Az i N2 RF
SS RC 277 arz . RC \/; BAFC=—T+?+3T|I’1 E (17)

(10
Note that the critical radiuRE appearing in Eq(17) is not
Mathematically, the assumption th&F(r) has a sharp the same as that given by Laplace’s formula, but should be
maximum atr.=1 means that determined by the solution of cubiwith respect tdR) equa-

L tion. Now
[VBIAF"(1)[]™ <1, 11
BI[AFF(1)]"|=97+2\2 (18)
whereAF" denotes the second derivative®F with respect
to the reduced radius and the method of steepest descent is relevant since the cri-
It is easy to see that in the capillary approximation terion (11) is fulfilled:
BIAF"(1)|=2\3. (12 (97+ 2x§);zgo_>(9r)*1< 1. (19

Our next step is to determine the dependence of the Sim"arPerforming the saddle-point integration in E8), one can

ity number\z on the critical exponents provided the tem- fing the nucleation rate in the droplet model approach
perature of the system approaches the critical one.

As functions of§=1—-T/T,, the thermodynamic quanti- BF(1)f5(1) 97+ 212
ties needed for our analysis have the following power-law J= FO \/ zZ (20)
approximations in the vicinity of the critical point: Re 2m
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matrix MijzazAF/agiagj, where{¢;} is a set of macro-
scopic variables describing the system. The integration over

% Y I a plane containing the saddle point is performed by the
A& T method of steepest descent and the statistical prefactor be-
= comes

£ ; 112 12

: 05/ droplet model | 0= 2m ) de(,BM?/Zﬂ') , (22
Hf(g i capillary approx. '8|)\1| de(,BM /277)

whereV is the available phase-space volume of the saddle
; point, the index O denotes the metastable state, and a prime
0 > 4 6 3 10 in_dicates that the negati.ve e.igenv.abuleas well as the zero
A, =R, (dncP)"? eigenvalues of the matriM;; is omitted. For the process of
¢ vapor condensation the simplified model contains only the
FIG. 1. Ratio (s numend (Jsdanayic VErsus the parameter order parameter. From the definition of the mobility matrix it

Az=R.(4mcB)" corresponding to the Fisher droplet modgslid  follows that— gX, =27 [cf. Eq. (12)]. Therefore, Eq(22)
line) and to the capillary approximatiaashed ling cannot be applied in the capillary approximation for the
liquid-gas system near the critical point because the criterion
To compare the analytical expressions given by Et@). (11) is violated. To calculate the nucleation rate in the criti-
and (20) with the numerical solutions of E¢8), we plot in  cal region one has either to evaluate the integral numerically
Fig. 1 the ratio  0sdnumeric/(Jsanayic Versus or to insert the logarithmic corrections,22] mentioned
\,=R.J/4moB calculated both in the capillary approxima- above in the activation energy of a droplbefore the
tion and in the Fisher droplet model. We see that formulsSteepest-descent evaluation of the integral. In the latter case
(20) gives us values of the nucleation rdtg that agree with this curvature term will play a crucial role in the determina-
the results of numerical calculations by E8) within the 5%  tion of the saddle point for the free-energy functional. This is
accuracy limit even for very small values § . In contrast, the last important point in our discussion. Equatidn can
in the capillary approximation presented by Et0), signifi-  Pe rewritten als¢8] via the imaginary part Inf of the ana-
cant deviations from the numerical results start already alytic continuation of the free energy density to the metastable
\>=2, which is assigned to a system rather far from theState
critical point. Thus the valua ;=2 may be considered as a
limit of applicability of the classical expressiqa0) for the
nucleation rate. At larger values of the similarity number
both analytical expressiond0) and (20) fit well to the re-
sults of numerical calculations. and the evaluation of Ith has been widely discussed in the
The errors introduced by the method of steepest desceliterature. Sometimes Iff has a form[18] like x"exp(—x?),
have been calculated numerically3] for the condensation where the dimensionless variabi corresponds to the acti-
of a gas. It was found that the errors are negligibly smallvation energy of a critical droplet time8, and the saddle
except for the smallest critical droplets and for the smallespoint is calculatedin the capillary approximationIn the
values of the activation energy of the critical droplet. Wecontext of a steepest descent this implies that the term with
show that this error can be parametrized by the single scalinghe logarithmic corrections” is considered as a slowly vary-
variable. Our analysis is valid for the Langer thed§]  ing part of the integrand in the vicinity of saddle point.
also, in which the prefactdg, is shown to be a product of the Therefore, these corrections are added to the activation en-
dynamical and statistical prefactoksand(},, respectively, ergy after the saddle-point evaluation of the integral and the
nucleation rate is overestimated again near the critical point.

_ Bl«
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